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The paper presents a musculoskeletal biomechanical model which resides in the 
Simulink / MATLAB environment and is suitable for the analysis of sporting activities.  
The model can be used to calculate ground reaction forces, muscles, joint and skeletal 
component loadings.  The model is currently being used at over 150 research institutions 
and because of its short learning curve is especially suitable for undergraduate teaching.  
The calculation of the muscle loading distribution is calculated by minimising an objective 
function.  The optimisation approach implemented uses a Lagrangian multiplier technique 
and is supplemented by a matrix partitioning method to apply inequality constraints.  This 
technique is capable of calculating the muscle force distribution in near real time using 
the limited resources of a laptop computer. 
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INTRODUCTION:  The modelling of the musculoskeletal system is becoming a widely used 
technique in sports biomechanical simulation.  Most models consist of rigid bodies with 
appropriate mass / inertia and geometric properties to represent the major skeletal 
components.  These segments are connected by joints which represent the kinematics of 
their anatomical counterparts [Delp et al 2007].   Muscles are included in the model enabling 
the muscle forces and joint contact forces corresponding to a prescribed movement and 
external forces to be calculated (inverse dynamics).  The inverse dynamics solution method 
commences with a calculation of the joint torques which correspond to the observed motion 
[Koopman et al 1995]. Equating the torques at the joints to the torques generated by the 
muscles results in a number of equality constraints; the number of equality constraints equals 
the number of joint torques considered in the model.  However most musculoskeletal models 
possess many more muscles than joint torques; for example the BoB model [Shippen and 
May 2010] has 606 locomotor muscles but only 30 joint torques to satisfy.  Hence the system 
contains many redundancies and consequently there is not a unique solution for the muscle 
loading problem by only satisfying the equality constraints.  Therefore it is necessary to 
introduce an objective function to choose the optimal solution from the infinite number of 
possible solutions for the muscle loading distribution.  This objective function should be 
based on a physiological basis, for example, minimising fatigue. Numerous objective 
functions have been proposed and implemented [Crowninshield and Brand, 1981, Thelen et 
al., 2003] and Modenese et al (2011) found that an objective function based on the 
minimisation of the sum of the quadratic of the muscles’ activation provided the best fit of the 
calculated muscle activity to the measurements of muscle activity using EMG methods. 
 
Additionally, inequality constraints arise as muscles cannot push and hence the 
instantaneous force must be greater than zero.  Also, the maximum force which a muscle 
can generate is limited and hence the instantaneous force must be less than this value which 
introduces further inequality constraints. 
 
Minimising the objective function subject to equality and inequality constraints can be solved 
by various numeric approaches but this paper presents a novel, computationally efficient 
method suitable for solving the muscle load distribution in a full body musculoskeletal system 
in real time on limited computing facilities.  This enables the production of a real-time 
biomechanical system providing feedback to a subject on the activation of muscles and loads 
occurring in the muscles and joints.  



 
METHOD:  The loads in the body’s muscles will be calculated as the distribution which 
minimises an objective function whilst being subject to equality and inequality constraints.  A 
Lagrange multiplier method approach will be used [Arfken 1985] to minimise the objective 
function subject to equality constraints together with an iterative matrix partitioning approach 
to accommodate the inequality constraints.  The objective function to be minimised, f(x), is 
defined as the sum of the squares of the muscles’ activations where muscle activation is 
defined as the instantaneous force divided by the maximum isometric force of the muscle: 

 f(x)  = 
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where xi  = muscle activation 
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 Fi = the instantaneous force generated in the muscle 
 Fimax = the maximal isometric force in the muscle modified by optimal 

length effects and contraction rate effects [Zajac 1989] 
 
Equality constraints, g(x), are defined which relate the torques generated by the muscles 
surrounding the joints to equal the torque required to articulate the joint in the observed 
manner as calculated by ann inverse dynamical analysis: 

 g(x)  = 
j

( )ri x ( )Fimax . xi  - Tj = 0 

where  ri  = the radius of the lever arm of action of the ith muscle about jth 
rotation axis through the jth joint centre 

 Tj = the torque occurring at the joint due to the surrounding 
muscles about jth rotation axis 

 
For an instantaneous configuration, ri can be considered to be a constant therefore g(x) can 
be expressed as: 
 g(x) = Aeq . x – T  = 0 
 
where Aeq = is a matrix of lever arms for the the ith muscle about the about 

jth rotation axis through the jth joint centre times the ith 
muscle’s maximal isometric force 

 
The minimum of the objective function subject to the equality constraint occurs at: 
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where j = jth Lagrangian multiplier 
 
Expressing the Lagrangian expression in matrix form and including the condition that  the 
equality constraints are valid results in: 
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It should be noticed that the above matrix is square and symmetric and therefore efficient 

methods can be employed for the solution of x and , for example LU factorization with 
partial pivoting.  To ensure that the solution for the muscle force lie between the upper and 



lower limits, partitions of the matrices will be defined.  Define a g-set which consists of all of 

the variables; ie the muscles activations (x) and the Lagrange multipliers (): 
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The g-set can be partitioned into 2 sets: the f-set (the variables which are within their 
prescribed limits as defined by the inequality constraints) and the s-set (the variables which 
are outside their prescribed limits as defined by the inequality constraints): 
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Assigning the limiting values of vs which are known, and solving for vf: 

 vf  = [ ]ff - ksf
T . vs

-1 kff  

 
 fs  = ksf . vf + kss . vs 
 
The s-set is further partitioned into u-set (the variables which exceed their prescribed limit) 
and the l-set (the variables which are lower than their prescribed limit).  Remove from the u-
set, and hence the s-set, the elements which correspond to an entry in fs less than zero.  
Remove from the l-set, and hence the s-set, the elements of the correspond to an entry in fs 
which are greater than zero.  Iteratively repeat for the solution of vf until there is no 
modifications to the s-set. vf will then contain the solution for the minimisation of the objective 
function subject to equality and inequality constraints together with the Lagrange multipliers. 
 
RESULTS:  The BoB musculoskeletal modelling system was used to generate the equality 
and inequality constraint equations for a full body model in a number of arbitrary poses 
subject to an arbitrary set of external forces; an example is shown in figure 1. Other 
examples can be viewed by searching for mendip89 on YouTube The musculoskeletal 
system consisted of 606 muscle forces and 30 joint torques. 
  
The muscle force distribution was calculated using 3 methods: 
1)  The above described Lagrange multiplier / partitioning based method. 
2)  An active set algorithm [Gill 1981] 
3)  An interior point convex algorithm [Gould and Toint 2004] 
 
All three methods calculated the same muscle loading distribution to within machine 
precision.  However there was a significant difference in the demand on computational 
resource between the various methods.  For the above trials, the Lagrange multiplier results 
were derived from translated Matlab [Mathworks, Natick, MA, USA] m-code whereas the 
active set and interior point convex algorithms were implemented using compiled code and 
hence the compilation of the former is expected to return even greater speed.  Table 1 lists 
the solution times for the full body muscle load distribution problem running on an i7 laptop: 
 

Table 1 

Solution times for differing methods 
 Method Solution time 
 Lagrange multiplier 0.052s 
 Interior point convex 0.647s 
 Active set 18.785s 



 
CONCLUSION:  A method has been described which is 
capable of solving the full body muscle load distribution 
which occur during arbitrary sporting activities within 
approximately one twentieth of a second on a laptop 
computer.  This speed of solution is commensurate with 
the requirements of a system providing real time feedback 
to a subject undergoing a biomechanical sports analysis 
of muscle, skeletal and joint loads.  The approach lends 
itself to compact, robust code development.  The Matlab 
m-code implementation of the above method consisted of 
54 lines of arithmetic and command control code.  If a 
search method is to be implemented to minimise an 
alternative objective function, it is suggested that the 
above method be used as a starting position for the 
search due to its low computational cost. 
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