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The purpose of this study was to investigate the link between composite cost functions, 
within the framework of optimal control, and the velocity-dependent tuning of motor 
strategy observed during the control of unconstrained 3D arm movements. We 
considered an arm pointing task at three different speeds. Experimental results indicated 
a change of rotation axis for most subjects from the geometrical shoulder-elbow (SE) axis 
toward the minimum principal inertia (e3) axis as velocity increased. These findings were 
interpreted based on a numerical inverse optimal control approach, assuming a total cost 
composed of kinematic, energetic and dynamic elements. While the kinematic cost 
predominated at low speed, the contribution of energetic/dynamic costs was reinforced 
for speeded movements, likely to exploit the inertial properties of the arm. 
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INTRODUCTION: Understanding how the central nervous system controls 3D upper limb 
movements is a long standing issue in biomechanics and neuroscience. For instance, what 
variables are critically monitored during the performance of complex 3D movements such as 
baseball pitching or skilled overarm throwing, and serve as a reference for the brain to 
efficiently and consistently execute such motor tasks remain largely unknown. In particular, 
whether the non-visual control of the upper limb relies more on geometrical properties 
pertaining to the orientation of body segments and joint angles or on mechanical properties 
pertaining to the mass distribution and torques is still a matter of debate (Pagano & Turvey, 
1995; Darling & Hondzinski, 1999; Wolpert et al., 1995). Interestingly, Isableu et al. (2009) 
showed that, during a cyclical arm rotation task, subjects exhibited spontaneous changes of 
rotation axis, switching from a geometrical one (Shoulder-Elbow axis, SE) to an inertial one 
(minimum principal inertia axis, e3) when executing the task at larger speeds. Hence, the 
reference variables used by the brain to control complex multi-joint movements might be 
speed-dependent.  
Interestingly, the optimal control framework precisely makes hypotheses about the variables 
possibly represented by the brain for motor control (Todorov, 2004). We thus investigated the 
link between speed-dependent motor strategies and cost functions using biomechanical 
modeling and simulation within that framework. We hypothesized that the total cost function 
was composite and made of at least three types of representative components: kinematic, 
energetic and dynamic (Berret et al., 2011). Furthermore, the relative importance of these 
components of the total cost was sought for using numerical inverse optimal control 
(Mombaur et al., 2009, Berret et al., 2011). We predicted that the contribution of each cost 
component could depend on velocity and that dynamic costs could be favored during quick 
movements. Indeed, it is conceivable that the biomechanical significance of kinematic and 
dynamic factors actually depends on the speed of motion.  
We thus designed a specific experimental protocol to investigate these questions, modelled 
the 3D arm dynamics, implemented inverse optimal control procedures and identified the 
composite costs underlying the experimental trajectories. We found a strong link between the 
speed-sensitivity of 3D reaching strategies and the relative contributions of the cost 
components, thereby arguing for a flexible representation of such variables within the brain 
during the control of skilled upper limb movements. 

MATERIALS AND METHODS: Ten healthy subjects (5 women and 5 men) voluntarily 
participated in the experiment. Written informed consent was obtained from each participant 



 

in the study as required by the Helsinki declaration and the local Ethics Committee. All of 
them were right-handed, free of sensory, perceptual and motor disorder, aged 28 ± 4 years, 
weighted 68 ± 9.7 kg and 167 ± 6.7 cm tall and naive to the purpose of the experiment.  The 
subjects were asked to perform pointing movements, from an initial upward hand position 
and L-shaped arm configuration [elbow angle 90°; shoulder elevation 90° and external 
rotation 90°] toward a horizontal plane. The task essentially consisted in a downward 
shoulder rotation, similar to Isableu et al. (2009). Subjects were instructed to move at three 
different speeds in a pseudorandom fashion (S=slow, N=normal, F=fast). Gaze was fixed 
and subjects were required to look at a reference point in front of them, preventing them from 
visually-guiding the movement. Importantly, no instruction regarding the final position of the 
fingertip on the planar surface was given to the participants in order to let each subject 
choose his/her preferred motor strategy as a function of speed. A motion capture system 
(Vicon motion system Inc., Oxford, UK) was used to record the 3D position of the upper limb 
at a rate of 250 Hz. A total number of 450 trials (15 trials x 3 speeds x 10 participants) were 
recorded and analyzed. 
Movement parameters computed from the 3D kinematics were the following: 
Shoulder-elbow rotation indice (SE indice). The SE indice was defined as the mean absolute 
shoulder-elbow axis displacement. At each time step, the angle between the current 
shoulder-elbow axis position and its initial position (at t=0), (t), was computed and the SE 
indice was calculated as: 

 (1) 

where T was the total movement duration. A strict rotation around this axis when performing 
the task was a possible strategy, which would yield a SE indice equal to zero.  
Minimum principal inertia rotation indice (e3 indice). The e3 indice is a dynamic parameter 
based on the minimum principal inertia axis displacement (denoted by e3). A method to 
calculate the instantaneous e3 axis for a 7-dof arm was described in Isableu et al. (2009). 
Importantly, it is worth noting that e3 definition only relies on the instantaneous arm 
configuration and its anthropometric characteristics. At each time step, the angle between 
the current e3 axis position and its initial position, (t), was computed and the e3 indice 
was calculated:      

 (2) 

A strict rotation around this axis was also a possible strategy, which would yield an e3 indice 
equal to zero. 
Inverse optimal control (IOC). To relate the above movement parameters to cost functions, 
we employed an inverse optimal control approach (Berret et al., 2011; Mombaur et al. 2009). 
The goal of IOC is to automatically uncover the composite cost function that predicts the best 
the recorded trajectories. In turn, this allows assessing the extent to which each cost 
component (here kinematic, energetic or dynamic; see Berret et al., 2011 for a precise 
definition of these cost functions) accounts for the observed arm trajectories. The latter 
quantity  will be referred to as the cost contribution. Note that the description of 7-dof arm 
trajectories in terms of a few cost contributions is also a convenient way to describe complex 
3D movements synthetically. 

 
RESULTS: The evolution of SE and e3 indices with respect to speed (here peak of hand 
velocity) is displayed for a representative subject in Figure 1. A regression analysis was 
carried out from all the trials for each subject. ANOVAs were also conducted to examine the 
variation of the SE and e3 indices as a function of movement speed for each participant. The 
results revealed that a total of 8/10 subjects had significant correlations with positive 
regression slopes for SE indice (e.g. S3). ANOVAs revealed a main speed effect (p<0.05 for 
these subjects), meaning that the SE indice significantly increased with respect to speed. 
The two other subjects (S6 & S8) showed negative regression slopes and ANOVAs did not 



 

reveal any main speed effect (p = [0.78, 0.77]). Therefore, these two subjects could be 
considered as insensitive to variations of speed. 

 

Figure 1: Experimental SE and e3 indices for a representative subject (S3) as a function of peak 
velocity of the hand.  

Similar observations hold for e3 indice. The same 8/10 subjects showed significant 
correlations with negative regression slopes (e.g. S3). ANOVAs revealed a main speed effect 
(p<0.05), meaning that e3 indice significantly decreased as a function of speed. The two 
remaining subjects showed positive regression slopes but ANOVAs only revealed a main 
speed effect S6 (p<0.01 for S6 and p=0.4 for S8). It should be noted that in any case the e3 
indice was much larger than the SE indice (about 18° vs 4°), illustrating that the motor 
strategy essentially involved rotations around the upper arm axis (but not strictly though). 
Indeed, fast movements tended to be associated with motor strategies making e3 axis more 
stable and SE axis less stable for a majority of subjects.  
The link between the speed-related variations of those movement parameters and the 
changes in cost function contributions, as inferred from IOC, is depicted in Figure 2 for all 
subjects. Regression analyses were conducted to quantify the relationship between the 
relative changes of the above movement parameters with respect to speed and the 
corresponding relative changes of kinematic cost contribution. This inter-subject analysis 
showed that a velocity-dependent decrease of the kinematic cost contribution was found to 
accompany the velocity-dependent tuning of SE and e3 indices. 
 

DISCUSSION: Our experimental results confirmed previous evidence for a velocity-

dependent tuning of the motor strategy related to an exploitation of the inertial arm’s 

properties, which becomes prominent at fast speed and turns out to alter significantly the 3D 

arm trajectories. These velocity-dependent changes were accompanied by changes of 

composite cost functions. In particular, the contribution of the kinematic cost to the total cost 

was diminished at large speeds in favor of an augmentation of its dynamic/energetic 

counterparts. Our results thus suggest that the speed-dependence of 3D arm reaching 

strategies could be partly explained by the presence of various components in the total cost, 

whose relative importance can be differentially revealed by movement speed variations. 

Therefore, the planning of arm trajectories may be done in both kinematic and dynamic 

coordinates (Wolpert et al. 1995; Isableu et al. 2009; Berret et al. 2011), with a weighting 

depending on motion speed. 

From a practical perspective, our results thus suggest that advanced athletic tasks involving 

rapid and complex 3D arm rotations such as shuttlecock striking or overarm throwing could 

be related to motor strategies optimal with respect to more dynamical cost functions. The  



 

optimal control strategies identified in experts (via inverse optimal control) could be used in 

turn to teach neo-practitioners how to better exploit the inertial arm’s properties as well as all 

other passive sources of motion such as interaction or gravitational torques. Further studies 

are required to investigate more deeply the cost functions underlying expert sport 

movements, especially in tasks where objective costs related to accuracy and end-point 

speed are also present. 

 

Figure 2: Correlation analysis between the kinematic cost contribution and the SE (left) and e3 

(right) indices.  Only relative changes are depicted here (Delta) because the correlations were 

much stronger using a relative rather than an absolute approach. 

CONCLUSION: This study revealed a strong link between the speed-dependent tuning of 3D 

arm reaching movements and the composition of the underlying cost function. Our results 

suggested that skilled movements may flexibly rely on kinematic and dynamic/energetic 

variables depending on the task characteristics (e.g. speed) but also on individual factors 

(e.g. prior sensorimotor preferences). It would be interesting to extend these findings to 

expert’s motion such as those involved in shuttlecock striking, baseball pitching or skilled 

overarm throwing.    
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